Consensus Clustering for Microarray Gene Expression Data
نویسندگان
چکیده
منابع مشابه
Consensus clustering of gene expression microarray data using genetic algorithms
This work presents a new consensus clustering method for gene expression microarray data based on a genetic algorithm. Using two datasets – DA and DB – as input, the genetic algorithm examines putative partitions for the samples in DA, selecting biomarkers that support such partitions. The biomarkers are then used to build a classifier which is used in DB to determine its samples classes. The g...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملClustering Algorithms for Time Series Gene Expression in Microarray Data
illustrations, 75 numbered references. Clustering techniques are important for gene expression data analysis. However, efficient computational algorithms for clustering time-series data are still lacking. This work documents two improvements on an existing profile-based greedy algorithm for short time-series data; the first one is implementation of a scaling method on the pre-processing of the ...
متن کاملComparative Study of Clustering Techniques for Gene Expression Microarray Data
Scientists can now monitor on a genomic scale the patterns of gene expression under varying environmental conditions. With this rapidly growing wealth of information comes the need for organizing and analyzing the data. One natural approach is to group together genes with similar patterns of expression. Several approaches have suggested various alternatives for similarity metrics and clustering...
متن کاملIntegrating Microarray Data by Consensus Clustering
With the exploding volume of microarray experiments comes increasing interest in mining repositories of such data. Meaningfully combining results from varied experiments on an equal basis is a challenging task. Here we propose a general method for integrating heterogeneous data sets based on the consensus clustering formalism. Our method analyzes source-specific clusterings and identifies a con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bonfring International Journal of Data Mining
سال: 2014
ISSN: 2250-107X,2277-5048
DOI: 10.9756/bijdm.6140